FITS structure
Introduction
The Application Programming Interface (API) for CamiFITS is based on 6 FITS-object structs with dedicated object-casting procedures to enforce the FITS standard . The API elements are typically called internally by one of the Basic tools but is made available in the documentation to provide insight in the structure of CamiFITS.
FITS-objects
CamiFITS.FITS — TypeFITSObject to hold a single .fits file.
The fields are
.filnam:: the.fitsfilename (:String).hdu: the collection of header-data-unit objects (::Vector{FITS_HDU}`)
CamiFITS.FITS_filnam — TypeFITS_filnammutable FITS object to hold the decomposed name of a .fits file.
The fields are: " .value: for p#.fits this is p#.fits (::String)
.name: forp#.fitsthis isp#(::String).prefix: forp#.fitsthis isp(::String).numerator: forp#.fitsthis is#, a serial number (e.g., '3') or a range (e.g., '3-7') (::String).extension: forp#.fitsthis is.fits(::String)
CamiFITS.FITS_HDU — TypeFITS_HDUObject to hold a single "Header and Data Unit" (HDU).
The fields are
.hduindex:: identifier (a file may contain more than one HDU) (:Int).header: the header object (::FITS_header).dataobject: the data object (::FITS_dataobject)
NB. An empty data block (.dataobject = nothing) conforms to the standard.
CamiFITS.FITS_header — TypeFITS_headerObject to hold the header information of a FITS_HDU.
The fields are:
.card: the array ofcards(::Vector{FITS_card}).map: Dictionarykeyword => recordindex(::Dict{String, Int}).size: length in bytes (::Int)
CamiFITS.FITS_card — TypeFITS_cardObject to hold the card information of the FITS_header object.
The fields are:
.cardindex: identifier of the header record (::Int).record: the full record on the card (::String).keyword: name of the corresponding header record (::String).val: value of the corresponding header record (::Any).comment: comment on the corresponding header record (::String)
CamiFITS.FITS_dataobject — TypeFITS_dataobjectObject to hold the data of the FITS_HDU of given hdutype.
The fields are:
.hdutype: accepted types are 'PRIMARY', 'IMAGE' and 'TABLE' (::String).data: in the from appropriate for thehdutype(::Any)
CamiFITS.Ptrs — TypePtrsPointer object holding startandstop`values for reading/writingIOStream`.
The fields are:
.start: startofIOStream (::Int).stop: endofIOStream (::Int)
CamiFITS.HDU_ptr — TypeHDU_ptrObject holding header and data Ptrs objects.
The fields are:
.header: IO pointing object (::Ptrs).data: IO data object (::Ptrs)
CamiFITS.FITS_pointer — TypeFITS_pointerObject holding an array of HDU_ptr objects.
The fields are:
.nblock: block count (::Int).nhdu: hdu count (::Int).block_start: start-of-block pointers: (::Tuple(Vector{Int})).block_stop: end-of-block pointers: (::Tuple(Vector{Int})).hdu_start: start-of-hdu pointers: (::Tuple(Vector{Int})).hdu_stop: end-of-hdu pointers: (::Tuple(Vector{Int})).hdr_start: start-of-header pointers: (::Tuple(Vector{Int})).hdr_stop: end-of-header pointers: (::Tuple(Vector{Int}))).data_start: start-of-data pointers: (::Tuple(Vector{Int})).data_stop: end-of-data pointers: (::Tuple(Vector{Int}))
CamiFITS.FITS_ptr — TypeFITS_ptrObject holding an array of HDU_ptr objects.
It has a single field:
.hdu: IO pointing object (::Vector{HDU_ptr})
FITS-object casting
The ordering of the FITS-object casting procedures is illustrated in the flow diagram below.

The use of the casting procedures is recommended over direct application of the FITS-object strucs to ensure conformance to the FITS standard .
CamiFITS.cast_FITS_filnam — Methodcast_FITS_filnam(filnam::String)Create the FITS_filnam object to decompose filnam into its name, prefix, numerator and extension.
Example:
julia> filnam = "T23.01.fits";
julia> n = cast_FITS_filnam(filnam);
julia> n.name, n.prefix, n.numerator, n.extension
("T23.01", "T23.", "01", ".fits")CamiFITS.cast_FITS_dataobject — Methodcast_FITS_dataobject(hdutype::String, data)Create the FITS_dataobject object for given hduindex constructed from the data in accordance to the specified hdutype: PRIMARY, IMAGE, ARRAY, TABLE (ASCII table) or BINTABLE (binary table).
Example:
julia> data = [11,21,31,12,22,23,13,23,33];
julia> data = reshape(data,(3,3));
julia> d = cast_FITS_dataobject("image", data)
FITS_dataobject("'IMAGE '", [11 12 13; 21 22 23; 31 23 33])
julia> d.data
3×3 Matrix{Int64}:
11 12 13
21 22 23
31 23 33
julia> d.hdutype
"'IMAGE '"CamiFITS.cast_FITS_header — Methodcast_FITS_header(dataobject::FITS_dataobject)Create the FITS_header object from the dataobject. The dataobject-input mode is used by fits_create to ceate the header object as part of creating the FITS object starting from Julia data input.
Example:
julia> data = [11 21 31; 12 22 23; 13 23 33];
julia> d = cast_FITS_dataobject("image", data);
julia> h = cast_FITS_header(d);
julia> h.map
Dict{String, Int64} with 7 entries:
"BITPIX" => 2
"NAXIS2" => 5
"XTENSION" => 1
"NAXIS1" => 4
"" => 36
"NAXIS" => 3
"END" => 6cast_FITS_header(record::Vector{String})Create the FITS_header object from a block of (a multiple of) 36 single-record strings (of 80 printable ASCII characters). The record-input mode is used by fits_read after reading the header records from disk (see casting diagram above).
Example:
julia> record = [rpad("KEYWORD$i",8) * "'" * rpad("$i",70) * "'" for i=1:3];
julia> blanks = [repeat(' ', 80) for i = 1:36-length(record)];
julia> append!(record, blanks); # to conform to the FITS standard
julia> h = cast_FITS_header(record);
julia> h.map
Dict{String, Int64} with 4 entries:
"KEYWORD3" => 3
"KEYWORD2" => 2
"KEYWORD1" => 144
"" => 36CamiFITS.cast_FITS_card — Methodcast_FITS_card(cardindex::Int, record::String)Create the FITS_card object for record with index cardindex.
Example:
julia> record = "SIMPLE = T / file does conform to FITS standard ";
julia> card = cast_FITS_card(1, record);
julia> card.cardindex, card.keyword, card.value, card.comment
(1, "SIMPLE", true, "file does conform to FITS standard ")CamiFITS.cast_FITS_HDU — Methodcast_FITS_HDU(hduindex::Int, header::FITS_header, data::FITS_dataobject)Create the FITS_HDU object for given hduindex, header and data.
Example:
julia> data = [11 21 31; 12 22 23; 13 23 33];
julia> d = cast_FITS_dataobject("image", data);
julia> h = cast_FITS_header(d);
julia> hdu = cast_FITS_HDU(1, h, d);
julia> hdu.dataobject.data
3×3 Matrix{Int64}:
11 21 31
12 22 23
13 23 33CamiFITS.cast_FITS — MethodFITS(filnam::String, hdu::Vector{FITS_HDU})Object to hold a single .fits file.
The fields are
.filnam: filename of the corresponding.fitsfile (::String).hdu: array ofFITS_HDUs (::Vector{FITS_HDU})
Example:
julia> data = [11 21 31; 12 22 23; 13 23 33];
julia> d = cast_FITS_dataobject("image", data);
julia> h = cast_FITS_header(d);
julia> hdu = cast_FITS_HDU(1, h, d);
julia> f = cast_FITS("test.fits", [hdu]);
julia> f.hdu[1].dataobject.data
3×3 Matrix{Int64}:
11 21 31
12 22 23
13 23 33CamiFITS.cast_FITS_pointer — Methodcast_FITS_pointer(o::IO)Prefered method to construct a FITS_pointer object.
Example:
julia> filnam = "foo.fits";
julia> data = [0x0000043e, 0x0000040c, 0x0000041f];
julia> f = fits_create(filnam, data; protect=false);
julia> fits_extend(f, data; hdutype="'IMAGE '");
julia> fits_extend(f, data; hdutype="'IMAGE '");
julia> o = IORead(filnam);
julia> p = cast_FITS_pointer(o);
julia> p.nblock, p.nhdu, p.block_start, p.block_stop, p.hdu_start, p.hdr_stop
(6, 3, (0, 2880, 5760, 8640, 11520, 14400), (2880, 5760, 8640, 11520, 14400, 17280), (0, 5760, 11520), (2880, 8640, 14400))
julia> p.hdr_start, p.hdr_stop, p.data_start, p.data_stop
((0, 5760, 11520), (2880, 8640, 14400), (2880, 8640, 14400), (8640, 14400, 17280))CamiFITS.cast_FITS_ptr — Methodcast_FITS_ptr(o::IO [; msg=false])
cast_FITS_ptr(p::FITS_pointer)Prefered method to construct a FITS_ptr object.
Example:
julia> filnam = "foo.fits";
julia> data = [0x0000043e, 0x0000040c, 0x0000041f];
julia> f = fits_create(filnam, data; protect=false);
julia> fits_extend(f, data; hdutype="'IMAGE '");
julia> fits_extend(f, data; hdutype="'IMAGE '");
julia> o = IORead(filnam);
julia> ptr = cast_FITS_ptr(o; msg=true)
block count: 6
hdu count: 3
start-of-block pointers: [0, 2880, 5760, 8640, 11520, 14400]
end-of-block pointers: [2880, 5760, 8640, 11520, 14400, 17280]
start-of-hdu pointers: [0, 5760, 11520]
end-of-hdu pointers: [5760, 11520, 17280]
start-of-header pointers: [0, 5760, 11520]
end-of-header pointers: [2880, 8640, 14400]
start-of-data pointers: [2880, 8640, 14400]
end-of-data pointers: [8640, 14400, 17280]
FITS_ptr(HDU_ptr[HDU_ptr(Ptrs(0, 2880), Ptrs(2880, 8640)), HDU_ptr(Ptrs(5760, 8640), Ptrs(8640, 14400)), HDU_ptr(Ptrs(11520, 14400), Ptrs(14400, 17280))])
julia> p.hdu[2].header.start, p.hdu[2].data.start
(5760, 8640)FITS methods
CamiFITS.fits_pointer — Methodfits_pointer(filnam::String)
fits_pointer(f::FITS)FITS_pointer object of the file filnam or its FITS object f.
Examples:
julia> filnam = "foo.fits";
julia> f = fits_create(filnam, data; protect=false);
julia> fits_extend(f; hdutype="'IMAGE '");
julia> fits_extend(filnam, data; hdutype="'IMAGE '");
julia> p = fits_pointer(f);
julia> p.nblock
5CamiFITS.fits_pointers — Methodfits_pointers(filnam::String)
fits_pointers(f::FITS)summary of the pointers internally used by CamiFITS
Examples:
julia> filnam = "foo.fits";
julia> data = [0x0000043e, 0x0000040c, 0x0000041f];
julia> f = fits_create(filnam, data; protect=false);
julia> fits_extend(f);
julia> fits_extend(filnam, data; hdutype="'IMAGE '");
julia> foreach(println, fits_pointers(filnam))
block count: 5
hdu count: 3
start-of-block pointers: (0, 2880, 5760, 8640, 11520)
end-of-block pointers: (2880, 5760, 8640, 11520, 14400)
start-of-hdu pointers: (0, 5760, 8640)
end-of-hdu pointers: (2880, 8640, 11520)
start-of-header pointers: (0, 5760, 8640)
end-of-header pointers: (2880, 8640, 11520)
start-of-data pointers: (2880, 8640, 11520)
end-of-data pointers: (5760, 8640, 14400)CamiFITS.fits_zero_offset — Methodfits_zero_offset(T::Type)Zero offset a as used in linear scaling equation
f(x) = a + b x,where b is the scaling factor.
The default value is a = 0.0 for Real numeric types. For non-real types a = nothing.
Example:
julia> T = Type[Any, Bool, Int8, UInt8, Int16, UInt16, Int32, UInt32,
Int64, UInt64, Float16, Float32, Float64];
julia> o = (0.0, 0.0, -128, 0.0, 0.0, 32768,
0.0, 2147483648, 0.0, 9223372036854775808, 0.0, 0.0, 0.0);
julia> sum([fits_zero_offset(T[i]) == o[i] for i ∈ eachindex(T)]) == 13
trueCamiFITS.fits_apply_zero_offset — Methodfits_apply_zero_offset(data)Shift the UInt range of values onto the Int range by substracting from the data the appropriate integer offset value as specified by the BZERO keyword.
NB. Since the FITS format does not support a native unsigned integer data type (except UInt8), unsigned values of the types UInt16, UInt32 and UInt64, are stored as native signed integers of the types Int16, Int32 and Int64, respectively, after substracting the appropriate integer offset specified by the (positive) BZERO keyword value. For the byte data type (UInt8), the converse technique can be used to store signed byte values (Int8) as native unsigned values (UInt) after subtracting the (negative) BZERO offset value.
This method is included and used in storing of data to ensure backward compatibility with software not supporting native values of the types Int8, UInt16, UInt32 and UInt64.
Example:
julia> fits_apply_zero_offset(UInt32[0])
1-element Vector{Int32}:
-2147483648
julia> fits_apply_zero_offset(Int8[0])
1-element Vector{UInt8}:
0x80
julia> Int(0x80)
128CamiFITS.fits_remove_zero_offset — Methodfits_remove_zero_offset(data)Shift the Int range of values onto the UInt range by adding to the data the appropriate integer offset value as specified by the BZERO keyword.
NB. Since the FITS format does not support a native unsigned integer data type (except UInt8), unsigned values of the types UInt16, UInt32 and UInt64, are recovered from stored native signed integers of the types Int16, Int32 and Int64, respectively, by adding the appropriate integer offset specified by the (positive) BZERO keyword value. For the byte data type (UInt8), the converse technique can be used to recover the signed byte values (Int8) from the stored native unsigned values (UInt) by adding the (negative) BZERO offset value.
This method is included and used in reading stored data to ensure backward compatibility with software not supporting native values of the types Int8, UInt16, UInt32 and UInt64.
Example:
julia> fits_remove_zero_offset(Int32[-2147483648])
1-element Vector{UInt32}:
0x00000000
julia> Int(0x00000000)
0
julia> fits_remove_zero_offset(UInt8[128])
1-element Vector{Int8}:
0Fortran objects
CamiFITS.FORTRAN_format — TypeFORTRAN_formatObject to hold a FORTRAN format specifier decomposed in its fields.
Accepted datatype specifiers are: Aw, Iw, Fw.d, Ew.d, Dw.d
Accepted output formating specifiers are: Aw, Iw.m, Bw.m, Ow.m, Zw.m, Fw.d, Ew.dEe, ENw.d, ESw.d, Gw.dEe, Dw.dEe. Notation: w - width, m (optional) - minimum number of digits, d - number of digits to right of decimal, e - number of digits in exponent N/S (optional) indicates engineering/scientific formating of the E type.
The fields are:
.datatype: primary FORTRAN datatype (::String).char: primary FORTRAN datatype character (::Char).EngSci: secundary datatype character - N for engineering/ S for scientific (::Union{Char,Nothing}).width: width of numeric field (::Int).nmin: minimum number of digits displayed (::Int).ndec: number of digits to right of decimal (::Int).nexp: number of digits in exponent (::Int)
Fortran-object casting
CamiFITS.cast_FORTRAN_format — Methodcast_FORTRAN_format(format::String)Decompose the format specifier format into its fields and cast this into the FORTRAN_format object. Allowed format specifiers are of the types: Aw, Iw.m, Bw.m, Ow.m, Zw.m, Fw.d, Ew.dEe, ENw.d, ESw.d, Gw.dEe, Dw.dEe, with: w - width, m(optional) - minimum number of digits, d - number of digits to right of decimal, e - number of digits in exponent; N/S (optional) indicates engineering/scientific formating of the E type.
Examples:
julia> cast_FORTRAN_format("I10")
FORTRAN_format("Iw", 'I', nothing, 10, 0, 0, 0)
julia> cast_FORTRAN_format("I10.12")
FORTRAN_format("Iw.m", 'I', nothing, 10, 12, 0, 0)
julia> F = cast_FORTRAN_format("E10.5E3")
FORTRAN_format("Ew.dEe", 'E', nothing, 10, 0, 5, 3)
julia> F.Type, F.TypeChar, F.EngSci, F.width, F.nmin, F.ndec, F.nexp
("Ew.dEe", 'E', nothing, 10, 0, 5, 3) FORTRAN-related methods
CamiFITS.FORTRAN_eltype_char — MethodFORTRAN_eltype_char(T::Type)FORTRAN datatype description character for julia type T:
Bool => 'L', UInt8 => 'B', Int16 => 'I', UInt16 => 'I', Int32 => 'J', UInt32 => 'J', Int64 => 'K', UInt64 => 'K', Float32 => 'E', Float64 => 'D', ComplexF32 => 'C', ComplexF64 => 'M'
The character '-' is returned for non-primitive FORTRAN datatypes and for primitive datatypes not included in the FITS standard.
Examples:
julia> T = Type[Bool, Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64];
julia> print([FORTRAN_eltype_char(T[i]) for i ∈ eachindex(T)])
Int8: datatype not part of the FITS standard
['L', '-', 'B', 'I', 'I', 'J', 'J', 'K', 'K']
julia> T = [Float16, Float32, Float64, ComplexF32, ComplexF64];
julia> print([FORTRAN_eltype_char(T[i]) for i ∈ eachindex(T)])
Float16: datatype not part of the FITS standard
['-', 'E', 'D', 'C', 'M']
julia> T = [String, Vector{Char}, FITS];
julia> print([FORTRAN_eltype_char(T[i]) for i ∈ eachindex(T)])
Vector{Char}: not a FORTRAN datatype
FITS: not a FORTRAN datatype
['A', 'A', '-', '-']Plotting
CamiFITS.step125 — Methodstep125(x)Step used for deviding the number x in steps according to 1-2-5 scheme
Examples:
step125.([5,10,21.3,50,100.1])
5-element Vector{Int64}:
1
2
5
10
20CamiFITS.select125 — Methodselect125(x)Select elements of the collection x by index according to 1-2-5 scheme
Examples:
x = [1,2,4,6,8,10,13,16,18,20,40,60,80,100]
select125(x)
[2, 6, 10, 16, 20, 60, 100]
x = string.(x)
select125(x)
["2", "6", "10", "16", "20", "60", "100"]
x = 1:100
select125(x)
[20, 40, 60, 80, 100]CamiFITS.steps — Methodsteps(x)Heatmap range transformation for steplength specification vector x
Examples:
x = [4,2,6]
steps(x)
[0, 4, 6, 12]CamiFITS.stepcenters — Methodstepcenters(x)Stepcenter positions for steplength specification vector x
Examples:
x = [4,2,6]
stepcenters(x)
[2.0, 5.0, 9.0]CamiFITS.stepedges — Methodstepedges(x)Stepedges for steplength specification vector x
Examples:
x = [4,2,6]
stepedges(x)
[0, 4, 6, 12]CamiFITS.edges — Functionedges(px [, Δx[, x0]])Heatmap range transformation from pixel coordinates to physical coordinates, with pixelsize Δx and offset x0, both in physical units.
Examples:
px = 1:5
Δx = 2.5
x0 = 2.5
edges(px)
[0.5, 1.5, 2.5, 3.5, 4.5]
edges(px, Δx)
[1.25, 3.75, 6.25, 8.75, 11.25]
edges(px, Δx, x0)
[-1.25, 1.25, 3.75, 6.25, 8.75]