Grid

The CamiDiff.Grid object is the backbone for the numerical procedure on a non-uniform grid. Its principal fields are grid.r and grid.r′, which are discrete functions of N elements representing the grid function and its derivative.

autoGrid

CamiXon.autoGridMethod
autoGrid(atom::Atom, T::Type; p=0, rmax=0, nmax=0, N=0, polynom=[], epn=5, k=5, msg=false)

Automatic setting of grid parameters for a given orbit Orbit or an array of orbits - orbits = [orbit1, orbit2, ⋯]. Important cases:

  • p == 0 (exponential radial grid)
  • p == 1 (linear radial grid)
  • p > 1 (quasi-exponential radial grid)
  • polynom=[] (free polynomial grid based on the polynom)
  • Nboost (multiplier to boost numerical precision)
  • epn (endpoint number: odd number to be used for trapezoidal integration with endpoint correction)
  • k (Adams-Moulton order to be used for k+1-point Adams-Moulton integration)

Example:

julia> atom = castAtom(;Z=1, A=1, Q=0, msg=false);

julia> spinorbit = castSpinorbit(n=75, ℓ=0, msg=false);

julia> grid = autoGrid(atom, Float64; nmax=spinorbit.n, msg=true);
Grid: exponential, Float64, rmax = 14137.5, N = 7900, h = 0.00126582, r0 = 0.642684

plot_gridfunction(grid, 1:grid.N; title="")

The plot is made using CairomMakie. NB.: plot_gridfunction is not part of the CamiXon package. Image

source

autoNtot

CamiXon.autoNtotMethod
autoNtot(n::Int)

Total number of gridpoints (rule of thumb value)

\[ N_{tot} = 400 + 100\ n,\]

where $n$ is the principal quantum number

Example:

julia> autoNtot(1)
500
source

autoRmax

CamiXon.autoRmaxMethod
autoRmax(atom::Atom, n::Int; rmax=0.0)

Largest relevant radial distance in a.u. (rule of thumb value)

\[ R_{max} = (2.5n^2 + 75.0)/Zc,\]

where $n$ is the principal quantum number and $Z_c$ the Rydberg charge

Example:

julia> atom = castAtom(Z=1, A=1, Q=0);

julia> rmax = autoRmax(atom, n; rmax=0.0); println("rmax = $(rmax) a.u.")
rmax = 77.5 a.u.
source

autoPrecision

CamiXon.autoPrecisionMethod
autoPrecision(rmax::T, ℓ = 0) where T<:Real

Floating point precision (rule of thumb value)

Example:

julia> atom = castAtom(Z=1);

julia> orbit = castOrbit(n=1,ℓ=0);

julia> rmax = autoRmax(atom, 0; rmax=0.0); println("rmax = $(rmax) a.u.")
rmax = 77.5 a.u.

julia> o = autoPrecision(rmax, 0); println("precision = $o")
precision = Float64
source

Def

The Def object serves to define the problem to be solved and to contain in the field def.Z the solution as a discrete function of N elements.

CamiXon.DefType
Def(T, atom, spinorbit, pot, scr, o1, o2, o3, pos, epn, k, am, matLD)

Type with fields:

  • .atom::Atom : atom object
  • .spinorbit::Spinorbit : spinorbit object
  • .codata::Codata : codata object
  • .pot::Vector{T} : tabulated potential function
  • .scr::Vector{T} : tabulated screening function
  • .potscr::Vector{T} : tabulated screened potential function
  • .G::Vector{Matrix{T}}: vector of zero-filled matrices
  • .σ::Vector{Matrix{T}}: vector of zero-filled matrices
  • .Minv::Vector{Matrix{T}}: vector of zero-filled matrices
  • .pos::Pos : object with fields Na, Nlctp, Nmin, Nuctp, Nb, N and nodes
  • .epn::Int : number of endpoints trapezoidal correction - must be odd
  • .k::Int : Adams-Moulton order
  • .am::Vector{T} : Adams-Moulton weight coefficients
  • .matLD::Matrix{T} : Lagrangian differentiation matrix

The object Def is best created with the function castDef.

source

castDef

CamiXon.castDefMethod
castDef(grid::CamiDiff.Grid{T}, atom::Atom, spinorbit::Spinorbit, codata::Codata [; pos=nothing, [scr=nothing[, msg=false]]) where T <: Real

Create the Def object starting from the CamiDiff.Grid object and the atomic properties of the objects Atom and Orbit. Optional: scr (supply screening array)

Example:

julia> codata = castCodata(2018)
julia> atom = castAtom(Z=1, A=1, Q=0);
julia> orbit = castOrbit(n=7, ℓ=2);
julia> grid = autoGrid(atom, orbit, Float64);

julia> castDef(grid, atom, orbit, codata, msg=true);
Def created for hydrogen 7d on exponential grid of 400 points
source

Pos

The Pos object serves within Def object to contain the position indices def.Na, def.Nb, def.Nlctp, def.Nmin, def.Nuctp used in Adams-Moulton integration. These positions are contained in the fields def.pos.Na, def.pos.Nb, def.pos.Nlctp, def.pos.Nmin, def.pos.Nuctp.

CamiXon.PosType
mutable struct Pos{T} where T<:Real

Type with fields:

  • .Na::Int: grid index of last leading point
  • .Nlctp::Int: grid index of lower classical turning point
  • .Nmin::Int: grid index of (screened) potential minimum
  • .Nuctp::Int: grid index of upper classical turning point
  • .Nb::Int: grid index first trailing point
  • .N::Int: grid index last point
  • .nodes::Int: number of nodes in reduced wavefunction (r ≠ 0)
  • .ΔNlctp::Float64: lctp offset with respect to Nlctp (1.0 ≤ ΔN ≤ 1.0)
  • .ΔNuctp::Float64: uctp offset with respect to Nuctp (-1.0 ≤ ΔN ≤ 0.0)

Mutable struct to hold special grid indices as well as the number of nodes and the (negative) offset of the exact uctp with respect to Nuctp. Pos is one of the fields of the Def object

Examples:

julia> pos = Pos(1, 2, 3, 4, 5, 6, 7, 8.0, 9.0, 10.0);
julia> pos.Nuctp
4

julia> pos.Nuctp = 8;
julia> pos
Pos(1, 2, 3, 8, 5, 6, 7, 8.0, 9.0, 10.0)
source

castPos

CamiXon.castPosMethod
castPos(E::T, Veff::Vector{T}, grid::CamiDiff.Grid{T}) where T<:Real

Create the Pos object starting from the energy E, and the effective potential energy (screened Coulomb potential) Veff[n] tabulated on the CamiDiff.Grid.

source

updatePos!

CamiXon.updatePos!Method
updatePos!(pos::Pos, E::T, Veff::Vector{T}, grid::CamiDiff.Grid{T}) where T<:Real

Update the Pos object starting from the energy E, and the effective potential energy (screened Coulomb potential) Veff[n] tabulated on the CamiDiff.Grid.

source

listPos

CamiXon.getNminMethod
getNmin(f::Vector{T}, start::Int, stop:Int) where T<:Real
getNmin(f::Vector{T}, itr::UnitRange) where T<:Real

Index corresponding to the absolute minimum of the discrete function $f[n]$ truncated at the boundary of the interval $start ≤ n ≤ stop$. Condition: $f'[n]$ must be monotonically increasing or decreasing on the interval ${start,stop}$.

NB. For a regular parabola the algorithm finds the index of the minimum. A truncated inverted parabola has two minima (at the boundaries of the interval). In this case the algorithm finds the index of the lowest of the two. If undecided the result is start.

source
CamiXon.getNmaxMethod
getNmax(f::Vector{T}, start::Int, stop:Int) where T<:Real
getNmax(f::Vector{T}, itr::UnitRange) where T<:Real

Index corresponding to the absolute maximum of the discrete function $f[n]$ truncated at the boundaries of the interval $start ≤ n ≤ stop$. Condition: $f'[n]$ must be monotonically increasing or decreasing on the interval ${start,stop}$.

NB. For an inverted parabola the algorithm finds the index of the extremum. A regular parabola has two maxima (at the boundaries of the search interval). In this case the algorithm finds the index of the highest of the two. If undecided the result is start.

source
CamiXon.getNcutMethod
getNcut(f0::T, f::Vector{T}, start::Int, stop::Int) where T<:Real
getNcut(f0::T, f::Vector{T}, itr::UnitRange) where T<:Real

Index corresponding to the intersection point of the discrete function $f[n]$ with the value $f_0$ in the interval start ≤ n ≤ stop,

\[ f[n_{cut}] = f_0.\]

Condition: $f[n]$ must be monotonically increasing or decreasing on the interval start ≤ n ≤ stop.

NB. For a monotonically decreasing function $n_{cut}$ is approximated by the largest $n$ for which $f[n] > f_0$. For a monotonically increasing function $n_{cut}$ is approximated by the smallest $n$ for which $f[n] > f_0$.

source
CamiXon.getΔNcutMethod
getΔNcut(f0::T, f::Vector{T}, Ncut::Int, sense=fwd; ϵ = 1e-8, k = 7)

Offset of the exact intersection with respect to the index Ncut given as a Real number. ϵ - convergence goal k - order of a k+1 point Lagrange interpolation procedure based on a linear grid. Forward sense (fwd): value in the interval {0.0, 1.0} Backward sense (bwd): value in the interval {-1.0, 0.0}

source